

Hexa-Path Magnetics

Formulas used to calculate electrical characteristics

Connecting windings in series

Inductance = Inductance_{table} \times (number of windings)²

 $DCR = DCR_{table} \times number of windings$

Isat = $(Isat_{table} \times 6) \div number of windings connected in series$

Irms = Irms_{table}

Connecting windings in parallel

Inductance = Inductance_{table}

DCR = $1 \div [number of windings \times (1 \div DCR_{table})]$

Isat = (Isat_{table} \times 6) ÷ number of windings connected in series

Irms = Irms_{table} × number of windings

Create a 130 Watt, 1:1, two switch forward converter transformer

Choose HPH6-2400L

Vin = 36 - 57 Vdc; Vout = 12 V, 10.8 A

Part number	Inductance (µH)	DCR max (Ohms)	Volt-time product (V-µsec)	Peak energy storage (µJ)	Isat (A)	Irms (A)
YCEFD25-2401	194 ±25%	0.030	131.9	N/A	N/A	2.90

Connecting primary windings in parallel

When primary windings (W_{pri}) are connected in parallel, DCR decreases, Irms increases, and inductance and volt-time product remain the same.

Example: For HPH6-2400L, connect three primary windings in parallel:

Inductance = Inductance_{table} = 194 uH

 $DCR = 1 \div [W_{pri} \times (1 \div DCR_{table})]$

 $= 1 \div [(3 \times (1 \div 0.030]) = 0.010 \text{ Ohms}]$

 $VT = VT_{table}$

= 131.9 V-µsec

Irms = Irms_{table} \times W_{pri}

 $= 2.90 \times 3 = 8.70 A$

Connecting secondary windings in parallel

When secondary windings (W_{sec}) are connected in parallel, DCR decreases and Irms increases.

Example: For HPH6-2400L, connect three secondary windings in parallel:

 $DCR = 1 \div [W_{sec} \times (1 \div DCR_{table})]$

 $= 1 \div [(3 \times (1 \div 0.030))] = 0.010 \text{ Ohms}$

Irms = Irms_{table} \times W_{sec} = 2.90 \times 3 = 8.70 A

Hexa-Path Magnetics

Formulas used to calculate electrical characteristics

Connecting windings in series

Inductance = Inductance_{table} × (number of windings)²

DCR = DCR_{table} × number of windings

Isat = $(Isat_{table} \times 6) \div number of windings connected in series$

Irms = Irmstable

Connecting windings in parallel

Inductance = Inductance_{table}

 $DCR = 1 \div [number of windings \times (1 \div DCR_{table})]$

Isat = (Isat_{table} × 6) ÷ number of windings connected in series

Irms = Irms_{table} × number of windings

Create a 100 Watt, 1:2, half bridge forward converter transformer with center tapped secondary Choose HP6-2400L

Vin = 36 - 57 Vdc; Vout = 24 V, 4.2 A

Part number	Inductance (µH)	DCR max (Ohms)	Volt-time product (V-µsec)	Peak energy storage (µJ)	Isat (A)	Irms (A)
YCEFD25-2402	194 ±25%	0.030	131.9	N/A	N/A	2.90

Connecting primary windings in parallel

When primary windings (W_{pri}) are connected in parallel, DCR decreases, current ratings increase, and inductance and volt-time product remain the same.

Example: For HPH-2400L, connect two primary windings in parallel:

Inductance = Inductance_{table} = $194 \mu H$

 $DCR = 1 \div [W_{pri} \times (1 \div DCR_{table})]$

 $= 1 \div [(2 \times (1 \div 0.030))] = 0.015 \text{ Ohms}$

 $VT = VT_{table}$

= 131.9 V-µsec

Irms = Irms_{table} \times W_{pri}

 $= 2.90 \times 2 = 5.8 A$

Connecting secondary windings in series

When secondary windings (W_{sec}) are connected in series, Irms remains the same, but DCR increases.

Example: For HP6-2400L, connect four secondary windings in series, creating a center tap at pins 9 and 5. For each half of the secondary:

 $DCR = DCR_{table} \times W_{sec}$

 $= 0.030 \times 2 = 0.060 \text{ Ohms}$

 $Irms = Irms_{table}$ = 2.9 A

Primary: L = 194 μH DCR = 0.015ΩIrms = 5.8 AVT = 131.9 V-μsec

Each half secondary; Sec A (3-9), Sec B (5-7): DCR = 0.06Ω Irms = 2.9 A